

"European Network for Arthropod Vector Surveillance for Human Public Health"

AGM Antwerp 2011

Jolyon medlock

Driving forces for change in distribution of *Ixodes ricinus* in Europe

WP 2.2

Objectives 2010-11

- Ixodes ricinus vector of LB, TBE etc.
- Hyalomma marginatum vector of CCHFV
- For Hm, focus given on defining habitats
- Not intended to deal with pathogen transmission cycles.

Acknowledgements – *Ixodes ricinus* 105 papers/personal communications

- Thomas Jaenson (Sweden)
- Kurt Pfister (Germany)
- Olivier Plantard (France)
- Aysen Gargili (Turkey)
- Anna Papa (Greece)
- Jens-Kjeld Jensen (Faroes)
- Per M Jensen (Denmark)
- Irina Golovljova (Estonia)
- Agustín Estrada-Peña (Spain)
- Maria Kazimirova (Slovakia)
- Antra Bormane (Latvia)
- Marketa Derdakova (Slovakia)
- Jean-Claude George (France)
- José A. Oteo (Spain)
- Margarida Santos Silva (Portugal)
- Karen McCoy (France)
- Richard Birtles (UK)
- Edward Sinski (Poland)
- Diana Zelinkova (Slovakia)

- Thierry de Meeûs (France)
- Sara Moutailler (France)
- Vaclav Honig (Czech Republic)
- Ana L. García-Pérez (Spain)
- Frans Jongejan (Netherlands)
- Annapaola Rizzoli (Italy)

- Kayleigh Hansford (UK)
- Jolyon Medlock (UK)
- Laurence Vial (France)

Driving forces

- Climatic effects at altitude
 - Evidence, explanations
 - Effects on hosts and vegetation
 - Effects on abundance, effect of latitude, aspect
 - Lower altitude restrictions
- Climatic effects at latitude
 - Growing season, impacts on host, vegetation
- Habitat patchiness/ connectivity
- Expansion of tick hosts (deer, boar)
- Urban green corridors
- Anthropogenic factors
- Overcoming lack of historical data to assess change
- Expansion to new territories
- No evidence of change

Altitudinal expansion - evidence

- Bosnia & Herzegovina
 - IR up to 1180m asl. Expansion from 800-900m in 1950s-60s (Omeragic 2010)
- Czech republic
 - Increase in altitude in Sumava from 700ms in 1950s & 1980, to 1100ms in 2001 (Daniel et al 2003)
 - IR at Krkonose found at 700-750ms in 1950s & 1980s, now at 1270ms,— site not subject to change in land use for past 50 years (Materna et al 2005; Danielova et al 2006)
- Slovakia
 - Previously IR upto 800ms, now found at ~1200ms asl (Marketa Derdakova PC; Maria Kazimirova PC; Bullova et al.)

Altitudinal expansion– explanation: Climate

Increased temperatures at altitude

- Czech Republic
 - expansion due to <u>increased temperature</u> <u>prolonged questing</u> period (Daniel et al 2004, Danielova et al 2006)
 - temp increases in spring/summer in Moravian highlands by 2.8oC creates conditions found at lower altitudes, making higher areas more suitable for IR survival. Increased temp in Jan/Feb mean increased small mammal survival (Danielova et al 2008a, b)
 - increase in AT at 1000m from 1961-2005 by 1.4oC; increase in spring/summer temp by 3.5oC in Krkonose (Danielova et al 2008b, 2010)
 - Hungary compared data from 1950s with 2000s autumn activity started and ended 1 month later (Szell et al 2006)

Inter-annual differences

 Weather changes responsible for inter-annual differences. Cold winter (more overwintering due to increased snow) and very hot summer increase tick numbers. (Daniel et al 2008) – need to look at long term trends

Mode of expansion – dispersal by deer

- movement occurs as engorged ticks on hosts to <u>sites now more favourable</u> for tick survival (Danielova et al 2006)
- deer possibly move IR to higher altitudes: effects of temperature on vegetation period at altitude (Materna et al 2008)
- increase in deer populations facilitated increase IR at these altitudes (Zeman & Benes 2004)

Altitudinal expansion

- explanation: habitat change
- Italy (Rizzoli et al 2009)
 - Increase in temperature in Italian alps since 1980s
 - Forest & wildlife management changed
 - Forest cover increased 2.2% (1950-2002)
 - Coppice decreased 11.8%
 - High stand forest increased 10.8%
 - Forests now considered more complex ecosystem, rather than just for timber
 - All factors combine to increase habitat for ticks
 - Increase in roe deer following 1940s war
- Slovakia (Maria Kazimirova PC; Hrklova et al 2008)
 - During last 20 years areas of formerly cultivated land at altitude is uncultivated, offering new rodent and IR habitats
 - Evidence of IR in new regions at altitude

Altitude: impact on tick abundance and biological explanations

- Czech Republic
 - Danielova et al 2006: IR abundance decreased with increasing altitude.
 - Materna et al 2008: vertical transects (620-1270ms)
 2002-2006
 - IR oviposited upto 1150ms
 - All eggs hatched <920ms, 33% at 1070ms
 - Greater variability in egg batches at altitude
 - 2006 (1.7oC warmer Jun-Aug): larval moulting higher no link to rainfall

Altitude: changes with aspect

- Jouda et al 2004; Burri et al 2007; Moran Cadenas et al 2007;
 Gern et al 2008
- IR recorded upto 1450m asl in Switzerland
- Density of nymphs <u>decreases</u> with altitude on <u>South-facing</u> slopes; but <u>increases</u> with altitude on <u>North-facing</u> slopes.
 Impact of <u>saturation deficit</u> on S-.
- More IR on S- compared to N-facing slopes
- Burri: N-facing Sat def stable at 1020m, levels detrimental to IR survival at lower altitudes
- Jouda: Start of IR season on S-facing slope was inversely related to altitude; not the case for end of season. No difference in peak of activity with altitude.
- Increased winter temp earlier onset, longer development
- Deer move up to higher altitudes in spring

Altitude changes with latitude

- Italy
 - Rizzoli et al 2002 IR less abundant >1300m
- Austria
 - Blaschitz et al 2008 IR present up to 827ms
- Czech Republic
 - Danielova et al 2006: up to 1080m in Sumava; 1270m in Krkonose
- UK
 - Gilbert 2010 IR present up to 550ms in Scotland numbers decreased with altitude linked to host abundance
- Any further data available?

Lower altitudinal restrictions with changing lowland climate

- Greece: Anna Papa PC; Papa et al 2008
 - Lower altitudinal limit 600ms
- Evidence from other countries?
- Evidence of actual change in lower altitudinal limit?

Climate & Latitudinal expansion (Sweden)

- Thomas Jaenson PC; Jaenson et al 1994; Talleklint & Jaenson, 1998;
 Lindgren et al 2000; Jaenson et al 2009
- Shift in IR distribution in Sweden
 - shift in 1980s, 1990s; field data and questionnaire study
 - shift linked to <u>reduction in number of days below -12oC</u> during winter, as well as milder winter, extended spring and autumn
 - no reported changes in land use, but <u>increase in roe deer</u> populations
- Climatic changes lead to:
 - increased veg. period: >180d IR commonly encountered, not <160d,
 - reduced length of snow cover: <=125d, IR consistently present,
 >=175d IR consistently absent
 - consequent increase and/or high densities of blood hosts roe deer, other Cervidae (due to Scabies in fox predators, and milder winters)
 - increased range and abundance of IR
 - This relates to Mainland Sweden, Norway, Finland, also many islands: Aland archipelago, Gotska Sandon, Stora Karlso, smaller islands on coast and Stockholm archipelago in some locations, Lepus timidus is main host in absence of cervidae

Latitudinal expansion (Finland, Norway)

Jaenson et al 1994; Talleklint & Jaenson, 1998; Han et al 2001; Jaenson & Lindgren, 2010; Kjelland et al 2010

- IR restricted to south of Finland
- Climate-based predictions that IR will expand to all regions by 2071-2100, along with expansion of deciduous woodland
- Increase in IR distribution on islands, possibly due to:
 - Climatic factors
 - Increased roe deer
 - Changes in habitat structure

Patchiness, connectivity & strains – Spain, UK

- Agustin Estrada-Pena PC; Jose Oteo PC, Medlock PC
- Long-term and short-term changes in <u>climate suitability</u> in Europe by modelling – increasing suitability with CC for some areas, but decreased in other sites – related to rainfall
- Habitat configuration (based on network theories) may contribute to significant changes in tick presence/abundance
- In addition to climate, host abundance and habitat patchiness
 networks of habitat patches are important
 - More IR with greater connectivity between patches
 - Distance between patches & habitat fragmentation are inversely related to probability of invasion/establishment of IR
- UK agri-environment schemes, woodland management creating networks & more ecotones
- Strains of IR high degree of plasticity, adaptation to regional climate. Work in press (AEP)

Expansion of tick hosts: Denmark

Per Jensen PC: <u>roe deer population</u> main driver of IR expansion:

- deer numbers increase 5x 1941-2000
- deer spread to new areas, tick data similar
- behavioural adaptation of RD to human disturbance
- afforestation (10-25% planned)
- change in agricultural practice (feed deer)
- scabies in foxes decline of predators
- recent disease in deer, cause unknown
- soil type (sandy) may limit spread of deer and ticks

Expansion of tick hosts & habitat connectivity/green cities: UK

Pietzsch et al 2005; Medlock et al 2008, Scharlemann et al 2008, Jameson & Medlock 2010, Medlock et al (in press)

- Historical data on IR published 1880-2005
- Questionnaire study showed evidence of ticks in new areas possibly not previously recorded; 73% reporting tick increase
- Tick <u>surveillance</u> 2005-2009 showed significant expansion in SW England, possibly linked deer. Roe deer have expanded in SW over recent years.
- Habitats include grasslands, as well as woodlands. Deer are important in sustaining populations
- More reports of IR in <u>peri-urban areas, gardens</u> network of green corridors, urban expansion, increased urban deer
- Woodland <u>management</u> strategies for biodiversity may promote tick survival and tick abundance; <u>environmental change</u>

Increased abundance of tick hosts

- Germany (Schwarz et al 2007)
- Field studies on abundance of questing ticks was related to:
 - Increasing temperatures
 - Soil moisture content
 - Vegetation type
 - Increasing wild boar population (roe deer population has remained stable)

Using tick-bite data as proxy for changes in IR dist/abundance

- Netherlands: Hofhuis et al 2006; Weilinga et al 2006; Gassner et al 2010
- No historical data
- Increase in tick bites on humans possible increase in IR, hard to quantify
- Five year study showed increase in IR abundance linked to degree of litter
- Possible contributory factors:
 - Expansion of nature reserves
 - Increased abundance of wildlife
 - Reduction of pesticides in agriculture and forestry
 - Climate change
- Is this evidence of spread, or just abundance? (Q to Dutch colleagues)

Anthropogenic factors

- PC: Olivier Plantard, Jean-Claude George, Karen McCoy
- France
 - IR present throughout the country (except Med; High altitude) in most forests.
 - No specific studies tracking spread
 - Increase of IR acknowledged,
 - Numerous factors centred on human-activity may contribute to destabilising a well-balance ecosystem:
 - Natural
 - Social
 - Anthropogenic

Anthropogenic factors

- Portugal Maria Margarida Santos Silva PC
 - Increase in studies on epi of TBD; Increased pathogen testing = increased occurrence IR
 - Changes in land management
 - Pest control strategies
 - Extensive destruction of habitats by fire
 - Increase in hunting
 - All contributed to change in distribution
 - Also Increase in roe deer, and their <u>re-introduction</u>
 - Also climatic factors = possible retraction in latitudinal range to C and N Portugal

Picture still incomplete, but studies ongoing

Urban green issues

- Korenberg 2009: Green areas in cities are providing new habitats for ticks. Example from St. Petersburg
- UK garden tick issues

Net Expansion to new territories (?)

- Faroe islands
 - Jens-Kjeld Jensen PC; Jaenson & Jensen 2007:
 - First record of IR on dog in 1990
 - Nymph on wheatear, 2000
 - Engorged female on cat, 2004
 - Engorged larvae on chiffchaff, 2004,
 - Nymph on human, 2005
 - Further investigations required....

No evidence of changes

- Estonia: Irina Golovljova PC: nationwide distribution of IR – no evidence of change in distribution, no specific studies
- Latvia: PC Antra Bormane,
 Vanwambeke et al 2010: No evidence
 that IR spread to eastern areas.
 Timber industry may play a role –
 natural/artificial forest re-growth could
 result in varying habitat quality. Clear
 felling could reduce habitat

Secondary tick issue (?)

- Turkey (Gargili et al 2010, Gargili et al 2011, Vatansever et al 2008)
 - 10% of ticks collected from people IR, upto 50% in some areas
 - Istanbul, 25% of ticks on humans: IR

V_b o r n Net

Limited/no information

- Iceland (Lindroth et al 1973) IR is present
- Ireland (Gray 2008) IR is present / abundant
- Austria (Blaschitz et al 2008) IR present up to 827ms
- Slovenia (Knap et al 2009) IR present up to 857ms
- Belgium (?), Andorra (+), Malta (-), Cyprus (-) –
 Estrada-Pena PC
- Lithuania (?), Luxembourg (?)
- Other countries....

V_b o r n Net

Conclusions

- Each country is different; general lack of field-based evidence, however enough evidence to suggest dramatic recent shifts
- Combination of factors
 - Temperature changes
 - Shorter/milder winters
 - Movement of tick hosts
 - Habitat connectivity
 - Changes to farming, forestry
 - Urban green corridors
 - Anthropogenic factors greater awareness, human behaviour, impacts on land use
- Evidence at the extremes
 - Higher altitude
 - Higher latitude
 - Islands
- Need for empirical data exemplically viable options discuss?

Hyalomma – driving forces for change

- Case study in Kosovo (Jameson & Medlock, in prep)
- Rise & decline of agriculture
 - Since 1960s, deforestation for agriculture
 - Decline in habitat for *Ixodes/Dermacentor*, more habitat for *Hyalomma*
 - Conflict 1990s, decline in agriculture, reduction in herbicide use
 - Less land now in production
 - Arable land acting as buffer between village/grazed grasslands now removed. Increased exposure/awareness of *Hyalomma*; shift in local geographic range

Hyalomma – driving forces for change

Influence of livestock

- Following conflict, large importation of naïve cattle from Europe to replenish stocks
- Indigenous breeds more resistant to external parasites
- Increased biting rates, possible co-feeding
- CCHF endemic areas similar to areas with high proportion of cross-breeds
- Cross-breeds favoured for higher milk yields
- Consequently more Hyalomma
- Tick removal from cattle is not routine

Hyalomma – driving forces for change

Influence of wildlife

- Hunting was heavy prior to 1990s
- Banned during/after conflict
- Large increases in wildlife numbers
- Hare populations have increased dramatically in some areas (important tick host, and virus reservoir)
- Possible link to decline in prey (rabies in fox)
- Imbalance in predator-prey cycle

Influence of humans

- Since 1990s, rural population has increased
- 60% employment in agriculture
- Tick-bite prevalence on the increase

Your expertise is required!

- jolyon.medlock@hpa.org.uk
- lisa.jameson@hpa.org.uk
- Next steps
 - Circulate summary of IR drivers
 - Circulate IR factsheet
 - Receive contributions on HM Thanks to those who have already offered contributions. JM and/or LJ will be emailing shortly

Thank you